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CHAPTER

Introduction to Signals

Introduction

A signal is any quantity having information associated with it. It may also be defined as a function of one
or more independent variables which contain some information. A function defines a relationship between two
sets i.e. one is domain and another is range.

It means function defines mapping from one set to another and similarly a signal may also be defined as
mapping from one set (domain) to another (range). e.g.

e Aspeech signal would be represented by acoustic
pressure as a function of time.

e A monochromatic picture would be represented by
brightness as a function of two spatial variables.

e Avoltage signal is defined by a voltage across two Domain Fig. 1.1 Range
points varying as function of time.

e Avideo signal, in which color and intensity as a function of 2-dimensional space (2D) and 1-dimensional
time (i.e. hybrid variables).

Note: In this course of “signals and systems”, we shall focus on signals having only one variable and will
consider ‘time’ as independent variable.

1.1 Elementary Signals

These signals serve as basic building blocks for construction of somewhat more complex signals. The
list of elementary signals mainly contains singularity functions and exponential functions. These elementary
signals are also known as basic signals/standard signals. Let us discuss these basic signals one-by-one.
1.1.1  Unit Impulse Function

A continuous-time unit impulse function &(t), also called as dirac delta function is defined as

(1) = ' =
0 {O, otherwise and __[08(1‘)0’2‘ !

The unit-impulse function is represented by an arrow with strength of ‘1’ which represents its ‘area’ or
‘weight'.
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The above definition of an impulse function is more generalised and can be
represented as limiting process without any regard to shape of a pulse. For
example, one may define impulse function as a limiting case of rectangular pulse,
triangular pulse, Gaussian pulse, exponential pulse and sampling pulse as shown

below:

1. Rectangular Pulse

3(t) = lim p(t)

e—0

2. Triangular Pulse

lim ! |:1 —m]
=07 T

0

&(t) =

3. Gaussian Pulse

&o:”ml{gm%q

—>0T

L t]<

>

Fig. 1.3

A(t)

Fig. 1.5
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14 8(t)

Fig. 1.2
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A(t)

1
1

27

1

21,
0 t

Fig. 1.6

4. Exponential Pulse
3(t) = lim l[e’“‘/‘]
15021
5. Sampling Function

oo

j KSa(kt)dt =1
T

—oo

k1/7t

2
~—~

/\ pO~ t
\V4 v =

(a)
Fig. 1.7

ol

Properties of Continuous Time Unit Impulse Function

1. Scaling property:
8(at) = - 8(t)
El
Proof:
y

la]

&at) = &(1)

Integrating above equation on both the sides with respect to ‘t’.

kolTe

‘a'is a constant, positive or negative

+oo oo 1

[ 8atyat = fa&t)dt
Let, at=r1

a-dt= gt ; ‘a is a constant, positive or negative

or lal - dt = &

+oo +oo q +oo
Now, [ 8atar = | 8(1)-ﬁ - g 0

oo +oo
By definition, [amat = [8(madr=1
o Satth) = |;|6(l‘i§)
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Product property/multiplication property:
x(1)8(t - t,) = x(t,)8(t - t,)
Proof :
The function 6(t - 1) exists only at t = t . Let the signal x(f) be continuous at t = t .

Therefore, x(1) 8(t-t) = x(t)ltzto Bt —1,) =x(t) 8(t- 1)
o x(t) &(t) = x(0) &(t)
Sampling property:

T x(t)8(t —t,)dt = x(t,)

)

Proof :
Using product property of impulse function
x(t) 8(t— 1) = x(t,) &(t— 1))
Integrating above equation on both the sides with respectto ‘'t

f x(t) 8(t —t,)dlt T x(ty) 8(t —t,)dlt

—co —oo

x to)fa(t—to)dt =x(t)

The first derivative of unit step function results in unit impulse function.
d
8(f) = —u(t
(t) = ~-ult)

Proof :
Let the signal x(f) be continuous att = 0.

+oo too
Consider the integral, f —[u(t)] x(t)at

I
—
<
—~
~
~
=
—~
~
~
—
|+
3 8
|
[E—
X\
—~
~
~
-
~~
~
~
Q
~

We know from sampling property, x(0) = f x(t) &(t) dt (i)
From equations (i) and (ii), we get -

+j di = T x(t)(t) ot
On comparing, we get &(t) = iu(Z‘)
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5. Derivative property:
ta
[ (87t - t,)clt = (_1)nxn(t)‘t=to .ty <ty <t, and suffix n means ' derivative
f
Proof:
Let the signal x(f) be continuous at t = {; where t, < {,< t,.

Consider the derivative %[x(z‘) 8(t—ty)] = x(t) & (t—1tp)+x'(t) 8t —1y)

Integrating above equation on both the sides with respect to ‘t’.

T2 [2 [2

{% x(t) 8(t —t,)] dt { x(t) §'(t —t,)at + { X(t) 8(t —ty)alt
] fa

| x(t) 8t = to)dit + [ x(0) 8(t — to)ait

t t

[x(0) 8t to)];

to to
[ x(t) 8t = to)at + [ x'(t) 8(t — to)alt
[1 [1
Here, &(t,-t))=0and &(f,-t,) =0 because t,# t, or t,# t,
to to
[ x(t) 8(t = to)alt + [ x(0)8(t ~ 1)t

t t

[x(t2) 8(to — to) — x(ty) 8(t; — 1o)]

So, 0

[2 t2

[xt) &t -to)at = (=) [ xO8(t-to)ar

4 t

(- using sampling property)

= = (1))

to
Hence, jx(t) & (t—ty)dt =

4]
If same procedure is repeated for second derivative, we get

|
|
—
~
—
=
~
—~
—
o
~

t
[ x(t) 87t - to)at = (=12 x"(t;)
]
On generalising aforementioned results, we get
ta
[x(t) 8"t~ to)dt = (1) x"(t))

4]
6. Shifting Property:
According to shifting property, any signal can be produced as combination of weighted and shifted
impulses.

x(t) = T x(1) 8(t — 1) dt

—oco

Proof:
Using product property, x(t) 8(t—ty) = x(1,) 6(t—t,)
Replacing t, by 1, x(1) 8(t—1) = x(t) d(t—1)

Integrating above equation on both the sides with respect to ‘1.
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T T x(7) 8(t — T)adt

—oo —oo

—
=
—~
~
=
[+
~
~
I
a
~
Q
a
Il

T T x(7) 8(t — T)adt

—oo —oo

=
—~
~
~
—
(4
~
~
|
A
~
Q
a
Il

x(f)- 1= jiox(r) S(t—t)dt

—oo

x(f) = Tx(r) 8(t—1)dt

—oo

7. The derivative of impulse function is known as doublet function:

() = ditsa)

Graphically,
J(t)

Fig. 1.8
Area under the doubletfunction is always zero.

Discrete-Time Case
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The discrete time unit impulse function §[n], also called unit sample sequence or delta sequence is

defined as,

0, otherwise

8] = {1, n=0

It is also known as Kronecker delta.
Properties of Discrete Time Unit Impulse Sequence

1. Scaling property:
d[kn]=d[n]; k is an integer

Proof:
By definition of unit impulse sequence,
1, =0
8n) = n
0, n=#0
Similarly, d[kn] = 1. kn=0
0, kn=0

n=0 3
n#0
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2. Product property:

x[n]8[n — ngl = x[ny1d[n — ny]

From definition,

1 =

We see that impulse has a non zero value only at n = n,

Therefore, x[n]8[n—ny] = x[n]| 8[n—ny]

n=n

x[n] 8[n—n,] = x[n,] 8[n—n,]

3. Shifting property:

+oo

x[nl= Y, x{k18[n - K]

Kk =—oco
Proof:
From product property, — x[n]8[n-n,] = x[n,] 8[n—n;]
Replacing n, by ‘K, x[n) d[n— K] = x[K] 8[n— K]
= f x[n) 8[n—k] = f, x[k]8[n — K]
k=—oo k=0
- A S oin-k = 3 KISk
k=—co K=—co
= x[n]-1= f x[k] 8[n— K]

oo

k

x[n]

' k13— K]

oo

k

o[n]=u[n] —u[n -1]

Proof:
By definition of unit step sequence,

un] = i o[n— k]
k=0
= J[n]+ i&[n—k]
k=1
But, un-1] = ia[n—k]
k=1

un] = 8[n] + u[n-1]
We get, 8[n] = u[n] - uln-1]

Introduction to Signals

4. The first difference of unit step sequence results in unit impulse sequence.
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Graphically we can see,

ufn —1]

il il

ms
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0123 n 012 n n
(a) (b)
Fig.1.10

Summary Table:

S.No. | Properties of CT unit Impulse Function | Properties of DT unitimpulse sequence
1. |8(t) = 120 dTS(t)dt 1 | n b =0;
. = an = nl=
0, otherwise S 0, otherwise
2. | x(t) &t —ty) = x(to )&t —t;) x[n]&§n —k] = x{k]8n — k]
d
3. o(t) :Eu(t) nl=u[n] —uln —1]
4. Tﬁ(t —Tt)dt=u(t) i dn —k]=u[n]
0 k=0
5. | x(t)= Tx(’c)ﬁ(t—r)dr sdnl= > x[k1 80 —K]
—oo k=—co
6. | [ x(t)8t —to)alt = x(tp) > +{mdin—ngl =t}
1
6(al‘)=g5(l‘)
dlkn] =g[n]
7. |Sattby=—-§[t+2
I
§-n]=3n]
&(-t) =8(t)
t 0), t, <0<t
8. jx(t)f)(t)dtz{x( b <0<t
t 0, otherwise
t
9 jx(t)&" (t—ty)dt =(—1)" x"(ty), t, <ty <t,
. :
where suffix n mean n derivative
)
10. 8(t)—dt &(t)
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1.1.2 Unit Step Function
The continuous-time unit step function, also called “Heaviside” unit function, is defined as,

1, t>0
t:
4 {O, <0
Graphically,
u(t)
1
t
Fig.1.11

The function value at t = O is indeterminate (discontinous)

Properties of unit step function:
(i) The unit step function can be represented as integral of weighted, shifted impulses.

u(t) = [ 8(t - 1)k
0

Proof:
+oo
According to the shifting property, x(t) = fx(r) 8(t—1)dt
et x(t) = u)
+oo +oo
ut) = [u()st-rdr = [8(t-1)cn
0

Since, ut) =0 ; —o<1<0
ut)=1; 120

(ii) Scaling property:
u(at) = u(t)

NOTE = The unit step function is continuous for all t, except for t = 0 where sudden change

take place (i.e. discontinuity).
] u(0) = % (The average value)
Discrete-Time Case

The discrete time unit-step sequence u[n] is defined as,

1, n=20

tn) = {O, n<0

Graphically,

A f—
- N ——o
W —-8

Fig.1.12
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1.1.3 Unit Ramp Function:
A continuous time unit ramp function is defined as

t, t=20
r(t) =

0, t<0
Also, r(t) = tu(t)
Graphically, r(t)

. Unit slope
t
Fig.1.13

Discrete-Time Case
A discrete-time unit ramp sequence is defined as

"] = {n, n>0

0, n<0
Also, rin] = nuln]
Graphically, r[n]
n
0123 n
Fig.1.14
t t o
o A= [uba e = | [8()arda o rn]=nuln]

—oo —o0 —oo

1.1.4 UnitParabolic Function:
A continuous-time unit parabolic function p(t) (unit acceleration function) is defined as

1.2
oty = 45 120
0 t<O
tr(t) t°
Also, H= 22t
p(t) 5 =3 (1)

Graphically, p(t)

Fig.1.15
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Discrete-Time Case
The discrete time unit parabolic sequence p[n] is defined as,

pln]
2
n
- >
pln) = 15 120
0 n<0 I ‘
nrn] _ rPun] ot L 34 5
Also, pln] = 241 n
2 2 Fig. 1.16
1.1.5 Signum Function
The continuous time signum function, sgn(t) is defined as,
1, t>0 sont)
sgn(t) = ’
gn(t) {—1, t<0 1
We see, u(t)—u(-t) = sgn(t) .
Also u(t) + u(-t) = 1 0
We get, sgn(t) = 2u(t) -1 —_ 1
Keeping following facts in the mind that is
Fig. 1.17

() lme* =1 t>0

oa—0

; t
i) Jme™ -4 t<o

The positive half of signum function can be represented as Iimoe’“tu(l‘) and the negative half, as
o —

lim e*'u(-1).

oa—0

Mathematically, sgn(t) can be represented as limiting case of exponential as

sgn(t) [e"“u(t) - e“fu(-t)]

= lim
a—0

sgn(t)

1+1

0 t
e(xt
L1

Fig. 1.18 : sgn(t) as limiting curve of exponential function

The discrete-time signum sequence is defined sgn(n]
-1, n<O0 1
sgn(n] = 1 0, n=0 - 12-3 [ ] ]
1 n>0 1110123 “ n
-1
Also, sgn[n] = uln—=1]-u[-n-1]

Fig. 1.19
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Example-1.1 Sketch the following signals:

(a) x,(t) = d(cost)

(b) x,(8) = sgn(sin %t)

(c) x4(f) = tsgn(cost) 0<t<2m
(d) x,() = u(sin %t)—u(—sin %t)

Solution:
(a) Since, o(h) = 0, t#0
we get, x,(f) = 8(cost) = 0, cost#0

x,(1) is shown in figure (a).

T 4 I R S S
o II 2_“ II 2 2 \‘ ll 2TC \‘ II
(a)
1; t>0
b) Since, sgn =
(0 . -1, t<0
. T
1; sin=t>0
. T T
we get, x,(f) = sgn(sm?t):
. T
-1; sin=t<0
T
x,(1) is shown in figure (b).
x,(f) = sgn (sin %)
t
-T / T 2T !

(b)
1; t>0
Si f) =
(c) Since, sgn(f) {_1; <0
we get, tsgn(cost) = t cost>0
—t; cost<O

The signal tsgn(cos t) is shown in figure (c).
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t sgn (cost)
2m+
an | |
2 :
L |
_ 2 !
x4(f) = sgn(cost) | !
1 L
‘\ Il \\ '2 : t
I | O %‘ ;'C 21
= f t o
2\ T 21 N
\\ 1 _1_'5“ ~
1+ ! 2
_3m|
2
(©)
. 1; t>0
(d) Since, u(t) =
0; t<O
( .
. 1; S|n?t>0
we get, u(sinTZ‘] =
. T
0; sin=t<0
L T
( . m
- - 1; sin=t>0
(smTz‘) (smTZ‘) T
. T
-1; sin=t<0
L T
S T,). L
The signal U(Sln z‘) ( Tt) is shown in figure (d).
A —sm—
u(smTt) ( )
e 2T -7 [0 T\ 2T a7, C T arfear Tl fo ) 2tf a7 t
u({sin ?t ( Sln?t)
1
t
27| -1| ol T| 27| 3T
-1
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(i) The complex exponential signal x(t) = e/ g periodic with period 2m/ay,.
(ii) The sinusoidal signal x(t) = sin(w,t + 0) is periodic with period 2n/®,.
o o
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(iii) The complex exponential sequence x[n] = e/f" ig periodic if Q/2r is a rational number.
(iv) The discrete time sinusoidal signal x[n] = sinQn is periodic if Q,/2r is rational number.

Solution:
(i) x(t) = €
For x(t) to be periodic x(t + T) = x(f)

Qloo(t+T) _ gloot

e/l =1

To hold equation (i), o, = 2nk
T= (E)k ; Kis an integer
g
. n .

The fundamental period Ty = — with k =1.

g

(ii) x(t) = sin(o,t + 6)

For x(t) to be periodic x(t+ T) = x(1)

sin[wo(t+T)+6] = sin(w,t+6)

sinfoyt + 6 + 0, T] = sin(o,t + 6)

to hold equation (ii), o, T = 2nk
T = (@Jk; k is integer
g

The fundamental time period Ty = (E) withk=1.
o

0
(iii) x[n] = /"
For x[n] to be periodic x[n+ N] = ¢/%o"
eonN = 1
to hold equation (iii), Q)N = 2rm ; mis positive integer
N = (@)m
Qo
or, Qo _ m=rational number
2n N

The sequence x[n] = /N s periodic if % a rational number.
|

(iv) x[n] = sinQyn
For x[n] to be periodic x[n+ N] = x[n]

(i)

.(iil)
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sin[Qqo(n+ N)] = sin(&,n)
sin[Qyn + Q N] = sinQ,n

SinQyn - cosQ N + cosn - sinQ N= sinQ,n (iv)
To hold equation (iv) sinQyN = 0
cosQ N = 1
Let, cosQ,N = cos2nm ; mis positive integer (general solution)
NQ, = 2nm
D _ m_ rational number
2n N
NOTE (] Sum of two continuous time periodic signals may or may not be periodic.
= m Sum of two discrete time periodic signals is always periodic.
m In case of continuous time, all sinusoidal signals are periodic but not all discrete
time sinusoidal signals are periodic.

" Same is the case with Euler function e/®tand e/,

. . (2 4
Calculate the fundamental time period of x(t) = 1+ sm(?nt) cos(?nt).

Solution:
x(t) = 1+sin(2—nt) Cos(ﬂt)
3 5
1l . (2n 4n . (2r  4m
= 1+—=|sin| —+—|t+sin| ——— |t
2 3 b5 3 5
= 1+l|:sin£nt—sin2—nt:|
2 15 15
T, = 2_n=15
(2]
15
2n
T, = =15
- (%)
15
Now, h = (15/1% =l rational number so x(t) is periodic

15 15 11

—
1l

LCM(T,, T,) = LCM(%JS) =15

Note: Addition of DC component does not affect the time period of signal.
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x[n]=sin(gn)+cos(2—n), calculate the period of the composite

signal x[n].
Solution:
(n N
x[n] = S|n(—n)+ COS(—)
3 4
d l
N1 N2
. o (m/3) m
Applying criterion, = —
pplying on N,
= , =6
. Y (m/4)  m
Applying criterion, = —
pplying o N,
N N, =8
Now, & = §---rational number
N, 8
The overall time period of x[n] is, N=LCM(N,, N,)
= LCM (6, 8)
N=24

Example-1.5 x[n] = eft@3n 4 ei3n/4)n Determine whether the signal is periodic or not, if
periodic determine the fundamental period.

Solution:

Let, x[n] = x,[n] +x,[N]

g/®on is periodic only if @y = MTm for some integers N> 0 and m.
x1[f7] — e/’(2r:/3)n

_2n
w7
o1 2mtm
3 N

So, N, = 3is fundamental period for x,[n].
x2[f7] — e/’(Sr:/4)n

_3n
vy
3n _ 2nm
4N,

So, N, = 8 is fundamental period for x,[n].

Hence, x[n] is periodic with fundamental period N,
N = LCM{N,, N,}
N=24
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